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Abstract
We present an automatic, spatially local data distribution and load balancing scheme applicable
to many-body problems running on parallel architectures. The particle distribution is based on
spatial decomposition of the simulation cell. A one-dimensional Hilbert curve is mapped onto
the three-dimensional real space cell, which reduces the dimensionality of the problem and
provides a way to assign different spatially local parts of the cell to each processor. The scheme
is independent of the number of processors. It can be used for both ordered and disordered
structures and does not depend on the dimensionality or shape of the system. Details of
implementation in the linear-scaling density functional code CONQUEST, as well as several case
studies of systems of various complexity, containing up to 55 755 particles, are given.

1. Introduction

In software applications using parallel architectures, distribu-
tion of computational workload has a direct impact on the effi-
ciency of the code. On MIMD (multiple instruction multiple
data) architectures with distributed memory and hybrid sys-
tems with both distributed and shared memory, data has to be
divided and assigned to individual processors which then com-
municate via messages. In partitioning the data we effectively
distribute the computational workload and decide which infor-
mation is stored on a particular processor and which has to be
obtained from other processors. The former consumes local
memory, the latter computational time. An efficient partition-
ing scheme must also achieve a balance between the size of
messages passed (and hence the demand on local memory) and
their number, which affects the sensitivity to latency of com-
munication. The workload assigned to each processor should
be approximately the same, interprocessor communication ef-
ficient and kept to a minimum and bookkeeping as simple as
possible. With larger data sets load balancing needs to be done
automatically, so as to provide the possibility of rebalancing on
the fly if necessary.

Various data distribution schemes have been developed,
including orthogonal recursive bisection, costzones [1], hashed
oct-trees [2], and inverse space-filling partitioning [3]. The
latter uses space-filling curves. Space-filling curves have also
been used for achieving data-locality in sparse-blocked matrix
multiplication [4] and data compression [5, 6], as well as in
adaptive finite element methods [7].

Particle simulations are one example of multidimensional
nonuniform problems that require parallelization and dynam-
ical load balancing. Molecular dynamics codes, for exam-
ple, routinely handle tens and hundreds of thousands of atoms.
Among them are DL POLY 3 [8], which uses domain decompo-
sition based on the link-cell technique [9], AMBER [10] with the
replicated data approach, and NAMD [11], using spatial decom-
position of the unit cell, i.e., the unit cell is evenly divided and
the parts are distributed over processors.

In electronic structure ab initio methods based on density
functional theory (DFT) [12], the recent advances in linear-
scaling (O(N), order–N) techniques [13, 14] have made
modelling systems with thousands of atoms possible [15–23].
The data distribution strategies again vary; ONETEP [21] creates
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a Peano space-filling curve (see section 3) to connect atoms
and determine their proximity in space [4], the simulation
unit cell itself is divided into slabs. The code of Shimojo
et al [24] uses spatial decomposition [25]. In this paper
we present a partitioning scheme using Hilbert space-filling
curves and its implementation in the linear-scaling DFT code
CONQUEST [15, 16]. CONQUEST does have another, non-automatic
load balancing algorithm, based on simulated annealing and a
more detailed model of computation and communication costs
for both atoms and grid points, which will be described in a
forthcoming publication. However, the scheme detailed in this
work is fully automatic, simple, and fast. Message passing in
CONQUEST is done within the Message passing interface (MPI)
standard [26, 27].

2. Data in many-body problems

In many-body simulations the data to be distributed among
processors are tied to particles or grid points. These data
are used for example to perform matrix multiplication for the
former and summation over the latter in constructing overlap
integrals. These operations also require information about the
surroundings of the particle or grid point.

The particles in question in a DFT simulation are atoms
and while we will deal with partitioning of atoms in this work
we note that the same method can be applied to any other
particles and indeed to grid points as well. We shall call the
set of atoms for which a particular processor is responsible the
primary set of atoms of that processor.

Most of the linear-scaling methods rely heavily on
multiplication of sparse matrices and thus it is matrix
multiplication that has to be parallelized efficiently [28].
Matrix elements are stored by rows in CONQUEST, so that for any
atom i from a processor’s primary set all matrix elements Xi j

are stored on that processor (i and j index atoms). Therefore,
in calculating the matrix product

Ci j =
∑

k

Aik Bkj (1)

only elements Bkj need to be communicated between
processors, because Aik and Ci j are local to the processor.

In CONQUEST, a spatial cutoff on the charge density is
imposed. That is, matrix elements of the charge density matrix
and related matrices are set to zero for atoms that are further
apart than a specified cutoff radius (see, e.g., [29]). It then
follows that the more spatially compact the primary set is,
the fewer Bkj elements need to be communicated between
processors and the faster the matrix multiplication.

There is a trade-off between memory usage and latency
in communicating the packets with Bkj elements. If many
packets are sent, the latency will affect the overall speed
of communication more than if fewer, larger packets are
exchanged. In the latter case, on the other hand, the demand on
memory increases. A good compromise is reached when the
units of atoms contain between 5 and 20 atoms. However, the
size of the primary set depends on the number of processors
used. We therefore introduce an intermediate ‘unit’, which
contains the required 5 to 20 atoms and does not depend

on the number of processors. We will call such a group a
partition [28]. A partition is defined in terms of its real space
boundaries, a definition which ensures spatial locality of atoms
in a partition. All atoms within a partition are assigned to one
processor. A processor is generally responsible for more than
one partition and these partitions form its primary set. The
spatial compactness of the primary set therefore fully depends
on the spatial compactness of the partitions assigned to each
processor.

CONQUEST imposes some additional constraints in the way
partitions are created: the partitions must be congruent (of the
same size and shape) and have the same orientation.

We will assume that the amount of work related to any
atom is about the same. This need not be the case if we have
different elements with different numbers of basis functions.
We show that we achieve good load balancing even treating
all atoms as equivalent in terms of the workload. They could,
however, easily be ‘weighted’ according to the number of their
basis functions to improve the load balancing. The weighting
can also be defined according to the number of neighbours or
indeed any other costs affecting the computational speed and
communication load.

With the partitions defined, we need a way to index them
and to assign them to processors, creating primary sets as
spatially compact as possible. We use space-filling curves for
this purpose.

3. Space-filling curves

A one-dimensional interval can be continuously mapped
onto n-dimensional space. In other words, a curve that
passes through every point of an n-dimensional region can
be constructed. Such curves are called space-filling curves,
see [30] for details. In two dimensions, several curves,
e.g., z-curve [31, 32], Grey-coded [33], Hilbert [34], and
Peano [35] curves, map continuously onto a square. It has
been shown both by analysing the mathematical properties
of the curves [36] and by testing [37] that the Hilbert curve
outperforms the z-curve and the Grey-coded curve in clustering
objects close in the n-dimensional space along the one-
dimensional curve, which in CONQUEST translates into creating
the best localized primary sets.

As Hilbert [34] had shown, after dividing the interval into
four congruent subintervals and the square into four congruent
subsquares, each subinterval can be continuously mapped onto
one of the subsquares. This procedure can be continued
recursively and the number of intervals (and squares) thus
created is 22b, b being the level of recursion. Note that b is
always an integer. In more dimensions, the same algorithm
applies with the bisection done in each dimension, i.e., in three
dimension the space would be a cube and the bisection would
be done in x , y, and z for each level of recursion, resulting
in 23b sub-cubes. The difference in the number of sub-cubes
between two levels of recursion in three dimensions is thus
23(b+1) − 23b = 7 × 23b. We will call these cubes Hilbert
cubes and will use them as our partitions.

Peano curves in two dimensions are created by dissecting
a square into 3 × 3 subsquares. In three dimensions, the
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difference in the number of sub-cubes between two levels of
recursion, 33(b+1) − 33b = 26 × 33b, is too large to be useful
for our purpose: if we have, for example, at a particular level
of recursion, Hilbert cubes containing on average 40 atoms,
after another division the new, smaller, Hilbert cubes would
contain 5 atoms on average. This is because each Hilbert cube
was divided into 8 smaller cubes and the number of atoms is
now within the required range of 5–20 atoms per partition. But
dividing one cube into 27 sub-cubes would result in maximum
of 1–2 atoms in the smaller cubes. We would thus have either
too many (40) atoms per partition, making even distribution
of workload difficult, or too few (1 or 2) atoms per partition,
which would lead to too many partitions and too few atoms for
efficient packet communication.

The mapping of a space-filling curve onto space preserves
spatial locality in the sense that points in adjacent subintervals
are adjacent in the n-dimensional space. The opposite is not
necessarily true. In three dimensions Hilbert cubes lying next
to each other on the Hilbert curve share a face in real space
(although cubes adjacent in real space are not always adjacent
on the Hilbert curve). This property is exploited in this work
to make the primary sets spatially compact.

The Hilbert cubes can be numbered using binary reflected
Grey codes [38]. (This does not mean that a Hilbert curve is
the same as a Grey-coded curve.) A sequence of Grey numbers
is traversed by flipping one bit at a time. In three dimensions, a
sequence of 3b-bit binary Grey codes provides labels which
can be used for the 23b Hilbert cubes. Moreover, such a
label encodes the position of the Hilbert cube in the three-
dimensional space as well as along the Hilbert curve. A Grey
code can be converted to a binary number with the same value.
Once converted to decimal, these numbers (Hilbert integers)
provide convenient labels for each cube. Taking the Hilbert
cubes in order of their number, we traverse the entire Hilbert
curve, crossing each Hilbert cube once and only once. We thus
have a particularly simple labelling scheme.

We use Skilling’s code for generation of Hilbert curves
and the corresponding Grey-codes and Hilbert integers [39].

4. Implementation in CONQUEST

In CONQUEST the number of partitions needed to distribute the
given number of atoms is first estimated (section 4.1) and
the cell is divided. The atoms are then assigned to partitions
according to their real space coordinates (section 4.2) and the
partitions are distributed to processors, taking into account
their position along the Hilbert curve (section 4.3).

4.1. Creating partitions

A simulation unit cell can have empty regions. However, to
keep advantage of the spatial locality of space-filling curves,
we map the Hilbert curve onto the whole unit cell, instead
of selecting only the occupied part. Because Hilbert curves
require the same number of cubes along each cell side, the
Hilbert ‘cubes’ in CONQUEST are not cubes unless the unit cell
itself is cubic. Their cell parameters have the same ratio as
the unit cell parameters. This is not a problem, as long as

they fulfil the conditions listed in section 2. CONQUEST currently
supports only orthorhombic cells, but the partitioning scheme
would work also with non-orthorhombic cells, because we are
interested in relative positions of the Hilbert cubes, not in their
absolute coordinates in real space. The only difference would
be in how to determine to which Hilbert cube an atom belongs.

Algorithm 1 shows how the initial estimate for the level
of recursion of the Hilbert curve (and therefore the number of
Hilbert cubes) is calculated. The initial level of recursion is
determined by considering the occupied volume of the unit cell
rather than the whole unit cell size. Hence the abbreviation occ
in the names of the variables. First (lines 1–5), the minimum
and maximum number of occupied partitions is calculated from
the number of atoms and the maximum or minimum number
of atoms in a partition, respectively. These are set to 5 and 20
in CONQUEST. The division on line 1 is an integer division and
therefore we increment min occ parts by 1 to ensure that the
minimum number of occupied partitions is not underestimated.
For example, consider having between 21 and 39 atoms in the
unit cell and a maximum of 20 atoms per partition. The integer
division in line 1 would give a maximum of one occupied
partition, when we clearly need at least two and thus the
correction in line 1. On the other hand, we cannot increment
max occ parts in the same way: the estimation of min occ parts
and max occ parts has to ensure that the resulting minimal
and maximal levels of recursion fall inside an integer interval
that will give the correct level of recursion. For max occ parts
we thus need a value less than or equal to the upper limit of
this interval and this is achieved by the ‘uncorrected’ integer
division in line 5.

In lines 2–4 we make sure that max occ parts is always
greater than zero. min occ parts is always greater than zero
due to the previous ‘+1’ correction. A zero value of either of
these variables would cause a zero argument in the logarithm
on line 19.

The occupied volume is estimated using the difference
between the largest and smallest atomic coordinates in all
three dimensions (line 6). If the atoms are all in a plane
perpendicular to one of the axes or along a line parallel
to one of the coordinate axes, i.e., if the system has ‘zero
dimensionality’ in one or two directions, the estimate is done
only for two or one dimensions, respectively, rather than all
three (lines 7–15 and 19 in Algorithm 1): in addition, the ratio
of the occupied part of the unit cell with respect to the whole
unit cell is calculated for each of the three directions x , y, and
z and is set to 1 for any direction in which the system has ‘zero
dimensionality’. This ensures that occ ratio for 1D and 2D
systems will not skew the estimates done in lines 16–19. In
lines 16–18 we calculate the occupied volume as a fraction
of the whole cell volume. Note that if the system is one- or
two-dimensional, this volume is also effectively one- or two-
dimensional, due to setting the corresponding occ ratios to 1.
Line 19 in Algorithm 1 shows how the initial level of recursion
is calculated for the required number of Hilbert cubes. It takes
into account the dimensions of the system and the relation
between the level of recursion and the number of Hilbert cubes,
2nb.

It can theoretically happen that b2, which was calculated
as a maximum level of recursion, is actually smaller than b1.
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Algorithm 1 Determining initial level of recursion, b.
1: integer division: min occ parts = #atoms / max atoms in

partition + 1
2: if #atoms < min atoms in partition then
3: min atoms in partition = #atoms
4: end if
5: integer division: max occ parts = #atoms / min atoms in

partition
6: determine the extent of occupied cell, occ cell
7: dims = dimensions of the structure
8: for directions x, y, z do
9: if occupied cell < very small then

10: occ ratio = 1
11: dims = dims − 1
12: else
13: occ ratio = cell parameter / occ cell
14: end if
15: end for
16: volume = occ ratio(1) × occ ratio(2) × occ ratio(3)
17: boundary1 = volume× min occ parts
18: boundary2 = volume× max occ parts
19: bi = log(boundaryi ) / log 2 / dims, i = 1, 2
20: integer b1 = floor(b1)
21: integer b2 = ceiling(b2)

22: b = min(integer b1, integer b2)

23: if b is 0 then
24: b = 1
25: end if

Algorithm 2 Assigning atoms to Hilbert cubes.
1: while refine do
2: refine = false
3: allocate all arrays dependent on b
4: for all atoms do
5: determine the real space partition
6: look up the Hilbert number of the partition OR

calculate it (axes to transpose)
7: end for
8: for all Hilbert cubes do
9: sum atoms in the HC

10: if number of atoms > global maximum then
11: refine = true ⇒ refine partitioning
12: deallocate all arrays dependent on b
13: end if
14: end for
15: end while
16: for all partitions do
17: calculate the Hilbert number
18: end for

Such a situation could occur if the original values of maximum
and minimum number of atoms per partition were close. For
this reason a minimum of b1 and b2 is taken in line 22. We
have not, however, come across such a situation in any of the
test cases: b2 is usually either equal to b1 or is larger by one
than b1. However, to make sure the algorithm is general, we do
leave the minimum here.

Lines 23 and 24 ensure that we always have more than one
partition.

The initial level of recursion is then used to generate the
partitions by spatial decomposition of the cell.

4.2. Assignment of atoms to partitions

For each atom its partition is determined according to its
real space coordinates (Algorithm 2) and the position of the
partition on the Hilbert curve is then found. This part of
the code uses Skilling’s axes to transpose routine [39],
which takes relative real space coordinates and returns a set
of ‘Hilbert space coordinates’, which can be converted to the
corresponding Hilbert integer.

Each Hilbert cube would be divided into 8 sub-cubes
in the next level of recursion. This somewhat limits the
options for refining the partitioning, because we cannot always
get the 5–20 atoms that would be optimal for the matrix
multiplication routines. We impose a looser condition of
the maximum number of atoms per partition instead. This
number has been set to 34 after testing the scheme on different
systems. However, it can be adjusted in the input of each
calculation with a keyword (General.MaxAtomsPartition). If
any partition contains more than the maximum number of
atoms, the partitioning is repeated with the level of recursion
increased by 1 (b = b + 1). With b estimated in the way
described in Algorithm 1 and General.MaxAtomsPartition set
to the default value, one refinement at most is usually needed.

An alternative way to assign atoms to partitions is to
loop over all partitions and search for atoms that fall into
each one. Here the necessity to refine the partitioning
is identified much more quickly because we do not wait
until all atoms are assigned to partitions to compare with
General.MaxAtomsPartition. However, the atoms have to be
sorted according to their coordinates in x , y, and z (i.e., in
CONQUEST three calls of mergesort, which scales as n log n) first.
The parallelization is also more complicated. We therefore use
the scheme in sequential runs, where looping over all atoms
more than once cannot be shared by more processors.

It would seem that atoms that fall on partition boundaries
can be assigned to either of the partitions in question, as long
as the assignment is consistent throughout the cell. However,
because fractional atomic coordinates in crystals are usually
given in the range [0, 1) rather than (0, 1], it turns out that
assigning atoms to partitions further away from the coordinate
system origin gives more balanced results. Consider for
example a one-dimensional system with atoms at positions
0.00, 0.25, 0.50, and 0.75. If we have four partitions along
the line and assign atoms to partitions ‘closer to 0’, we will
get two atoms in the first partition (0.00 and 0.25), one in
each the second and third partition, and none in the fourth
partition. Whereas assigning the atoms ‘closer to 1’ will put
one atom into each of the partitions. The (4 × 4 × 4) Si crystal
(section 5) is a case in point: assigning atoms on boundaries to
the partitions ‘closer to 1’ yields eight atoms in every partition
and perfect load balancing. In contrast, assigning the boundary
atoms to partitions ‘closer to 0’ gives between 1 and 10 atoms
per partition.
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4.3. Assignment of partitions to processors

Algorithm 3 details the way partitions are assigned to
processors. First, an initial estimate of the number of atoms per
processor is made (line 1). The Hilbert curve is then traversed
and partitions are added to a processor until the number of
atoms is greater than or equal to the initial estimate (lines 4–7).
This can result in too many atoms on some processors and no
atoms on the last ones. If this is the case, the initial estimate is
decreased by 1 (lines 8–11) and the procedure is repeated. The
same is done if the last processor has too few atoms compared
to the rest of the processors (lines 12–15). If, however, the
number of atoms on the last processor is significantly larger
than on the previous ones (i.e., atoms are ‘left over’), the code
starts with the last processor and shifts partitions one by one
from processor n to n − 1 until the difference in the number
of atoms on those two processors is less than or equal to the
average number of atoms in an occupied partition. That is, it
takes into account the average number of atoms that can be
shifted by shifting whole partitions (lines 16–22).

Algorithm 3 Assigning partitions to processors.
1: max atoms per processor = #atoms / #processors
2: reassign = true
3: while reassign do
4: for all partitions do
5: add partitions to a processor until #atoms on the

processor � max atoms per processor
6: end for
7: reassign = false
8: if any processor has no atoms then
9: decrement max atoms per processor by 1

10: reassign = true
11: end if
12: if too few atoms on last processor compared to the other

processors then
13: decrement max atoms per processor by 1
14: reassign = true
15: end if
16: if too many atoms on last processor compared to the

other processors then
17: calculate average #atoms in occupied partition

(correction)
18: start with the last processor
19: while #atoms on neighbouring processors differs by

> correction do
20: shift one partition to the previous processor
21: end while
22: end if
23: if max atoms per processor has been decremented to 0

then
24: print error message: too many processors used
25: exit program
26: end if
27: end while
28: reshuffle empty partitions

If the maximum number of atoms per processor has been
decremented to zero, it means that there are not enough

occupied partitions to be distributed to all processors and the
program exits with an error message, rather than leaving some
processors empty (lines 23–26).

Finally, after a balanced distribution of atoms is obtained,
the code searches along the Hilbert curve for strings of empty
partitions that fall on the boundary of partitions assigned to
different processors. If such a string is found and better balance
in the number of partitions can be achieved, some of the empty
partitions are shifted to the other processor (line 28).

Rebalancing during a calculation is not yet implemented
in CONQUEST, however, the procedure is simple: the partitioner
has to be rerun and the assignment of atoms to partitions
checked against the original one. Apart from updating the
assignment, information about atoms that have moved to a
different partition has to be broadcast between processors
only if the new partition is on a different processor. Here
again the spatial locality of the primary sets, achieved with
the help of the space-filling curve, keeps the interprocessor
communication as low as possible.

5. Case studies

We ran our tests on an IBM p690 system consisting of Regatta
nodes (logical partitions), which have 32 POWER4 1.3 GHz
processors each and share 64 GB of memory. Tasks running
on one node communicate via shared memory or message
passing using shared memory. Tasks running on adjacent nodes
communicate using the IBM High Performance Switches [40].
The system shows performance variations of about 10% and
we therefore ran every calculation five to six times and took
the mean of the recorded times. We always considered the CPU
time on the processor that took the longest to complete its task.
However, the variation in the CPU times across the processors
is so small that plotting the mean or even the minimal CPU
time does not make any difference. To ensure that no other jobs
interfered with the test calculations, the whole node was always
reserved, even for calculations using fewer than 32 processors.
We use a single-ζ basis set for all atoms to cut the overall CPU
time for the tests, but the partitioning scheme itself does not
depend on the basis set used.

CONQUEST uses an overlap matrix S of localized orbitals
φiα(r):

Siα, jβ =
∫

dr φiα(r)φ jβ(r), (2)

where i , j index the individual atoms and α, β the localized
functions. We tested the time needed for a calculation of
the inverse of the S matrix by Hotelling’s method [41, 42]
for different systems. Virtually all computational time in this
algorithm is spent on matrix multiplication. We also calculated
one energy minimization step for the (4 × 4 × 4) Si crystal
described below and compared the scaling to the scaling of the
inverse matrix evaluation. The results are virtually the same
(see figure 1, see below for discussion of S range) and we
therefore use the inverse matrix calculation to test the overall
scaling.

We use standard deviation defined as

σ =
(

1/(n − 1)

n∑

i=1

(Ni − N̄ )2

)1/2
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Figure 1. Bulk Si, 512 atoms. Speedup with respect to number of
processors for one energy minimization loop and for calculation of
an inverse matrix with two different L range values. The inset shows
an enlarged part of the main graph.

to assess the balance of distribution of atoms over processors.
Here n is the number of processors, Ni the number of atoms on
processor i , and N̄ the mean number of atoms on a processor.

The first system used for the tests, the Si crystal, can be
perfectly partitioned, i.e., all the partitions will have the same
number of atoms and will be evenly divided on 2n processors.
Since all atoms in the unit cell are the same, they are described
using the same basis and are equal in terms of workload. We
use a (4 × 4 × 4) Si unit cell that contains 512 atoms. The
second test case, a Ge hut cluster on Si(001) surface, presents
a system more complicated to partition because it is not a
perfect crystal and the unit cell contains empty regions. The
structure is, however, still quite regular, not only within the
Si slab, but even in the Ge cluster. We use two models,
one with the hut cluster positioned in the middle of the cell
(Hut C) and one where the atoms are centred at the coordinate
origin (Hut 0). The latter leads to vacuum in the centre of
the unit cell and thus presents a slightly more complicated
system to the partitioner. The cell is significantly larger than
that of the Si crystal (86.9 Å × 86.9 Å × 40.7 Å and
21.7 Å × 21.7 Å × 21.7 Å, respectively) and contains 4363
atoms. With the same number of valence electrons for Ge and
Si the workload associated with all atoms is the same.

The third system is a protein and partitioning it adds two
new challenges. First, the system is spatially inhomogeneous
compared to the well ordered Si crystal and even the hut on the
Si surface. Second, the atoms are no longer equivalent in terms
of workload and even with the number of atoms well balanced
across the processors the scaling is expected to be less efficient.
We chose two protein models, one with 323 atoms for testing
the scaling and one with 55 755 atoms, for which we studied
only the distribution of atoms over processors.

Si crystal

Figure 1 shows scaling for two different values of the spatial
cutoff imposed on the S matrix. While the calculation with the
larger, 10.1 bohr, cutoff is computationally more demanding,

Figure 2. Speedup of the calculation of the inverse S matrix.
Speedup2, 4, 32 is speedup with respect to CPU time on 2, 4, and 32
processors, respectively. Maximum number of atoms per partition is
listed.

Table 1. Distribution of atoms on processors for the Ge hut cluster,
Hut 0.

Processors Ideala Mean Minb Maxc Std. dev.d

4 1165.8 1165.8 1163 1170 3.10
8 582.9 582.9 572 600 10.36

16 291.4 291.4 276 308 11.41
32 145.7 145.7 124 159 11.22
32e 145.7 145.7 144 150 1.57
64 72.9 72.9 55 105 13.98

a Number of atoms/number of processors.
b Lowest number of atoms on a processor.
c Highest number of atoms on a processor.
d Standard deviation.
e Smaller partitions. See section Ge hut cluster for discussion.

6.7× than with a 7.1 bohr cutoff, it scales better, because each
transmitted packet is longer and the transfer is more efficient.

Ge hut cluster

The Ge hut cluster on Si(001) surface we used contains
3072 Si and 1291 Ge atoms. As can be seen in figure 2,
the scaling up to 32 processors is almost as good as for
the perfect Si crystal for both Hut C and Hut 0. (When
using 64 or 128 processors the calculation runs on two and
four nodes, respectively.) Table 1 lists distribution of atoms
over processors for Hut 0, i.e., the more complicated of
the two. The average number of atoms on a processor
matches exactly the ideal number of atoms per processor.
The average number of atoms per occupied partition is 23.4,
with a range of 1–34 atoms per partition (standard deviation
10.5). The range of number of atoms per processor on 8,
16, and 32 processors varies by about the average number
of atoms per partition, which suggests that improvements in
load balancing would have to achieve a smaller number of
atoms per partition. This is indeed the case, as shown in
figure 2 and in table 1. Specifically, in table 1 compare the

6
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Figure 3. Primary sets of atoms in the Ge hut cluster divided among 32 processors. Atoms of the same colour belong to the same primary set.
Top: Hut 0, maximum 34 atoms in a partition. Bottom: Hut 0, maximum 17 atoms in a partition. Framed in the middle: Hut C, maximum 17
atoms per partition.

(This figure is in colour only in the electronic version)

two lines showing distribution of atoms over 32 processors.
With smaller partitions the minimum and maximum number
of atoms per processor differs by only six atoms, compared
to 35 with larger partitions. The standard deviation is
also much smaller when using smaller partitions. Naturally,
smaller partitions can increase the overall computational effort
somewhat.

Using only four processors allows the atoms to be
distributed over the processors very evenly, because of the four-
fold symmetry of the hut. Each processor thus gets a quarter
of the hut and that accounts for the small standard deviation,
compared to distributions over more processors. For the other
numbers of processors, the standard deviation remains fairly
constant, which shows that our method is really independent
on the number of processors.

Hut C scales slightly better than Hut 0, however, the main
difference in scaling is not caused by the position of the atoms
in the unit cell but rather by the size of the partitions, with
smaller partitions leading to better scaling. This is due to more
spatially compact primary sets that can be built up from smaller
partitions, cf the top and bottom pictures in figure 3. Note that
although Hut C and Hut 0 look different in figure 3, periodic
boundary conditions are used in the calculations and therefore
the only difference between Hut C and 0 is their absolute
position in the unit cell, not the atomic structure. The original
Hilbert curve can be partly traced in figure 3; notice the initial
bisection in the x and y direction, visualized by the straight
sharp boundaries of the primary sets in the middle of the cell of
Hut 0 (figure 3 top left, bottom left). Likewise, the subsequent
divisions can be seen in the primary set boundaries parallel to x
and y. Similarly, the initial division in the z direction is visible
in the side view of Hut C (figure 3, middle) as the horizontal
boundary between the primary sets.

Figure 4 shows the CPU time summed over the number
of processors, which represents the ‘total’ CPU time the

Figure 4. Ge hut clusters, ‘total’ CPU time: CPU time for a
calculation summed over the number of processors used.

calculation took. It combines information about speedup
and the absolute CPU time. Clearly the larger number of
partitions does not slow the calculation down. Even though
the total CPU time increases as we go from 4 to 32 processors,
between 32 and 128 processors the increase is quite small for
the calculations with more compact primary sets. Scaling of
CONQUEST calculations on large numbers of processors is thus
very efficient.

Small protein

Table 2 lists the distribution of atoms to processors for the
smaller protein. The scaling is shown in figure 2. The
maximum number of atoms in an occupied partition is 13. We
note that with only 323 atoms, using 16 processors results in

7
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Table 2. Distribution of atoms on processors for the small test
protein.

Processors Ideala Mean Minb Maxc Std. dev.d

4 80.8 71 68 75 3.16
8 40.4 35.5 32 40 3.16

16 20.2 17.8 12 29 4.96

a Number of atoms/number of processors.
b Lowest number of atoms on a processor.
c Highest number of atoms on a processor.
d Standard deviation.

too few atoms per processor and we get 14–29 atoms on a
processor. The load levelling and thus the speedup might in
this case be improved by ‘weighting’ atoms according to the
number of their basis functions.

Large protein

We have also used the automatic partitioner on a protein
structure containing 55 755 atoms, although we have not done
scaling tests. The atom distribution is listed in table 3. There
are, on average, 10.6 atoms in a partition, with 23 atoms
in a partition at most. The standard deviation of the atom
distribution is 5.11.

6. Discussion and conclusions

Specific applications of CONQUEST have not been presented
in this paper as the main purpose is to describe the
implementation of an automatic load balancing procedure as
part of the code; we have other, optimizing approaches to
load balancing which involve significant pre-processing and
will be described elsewhere. While the parallelization which
can be achieved with the optimizing schemes is better, it is
significantly harder to re-assign atoms dynamically in this
scheme (i.e., as the atoms are displaced); with the procedure
described in this paper, molecular dynamics with large atomic
displacements will not present any problems. The scheme
described in this paper has been used for recent CONQUEST

applications, and we give a brief overview here.
The enzyme dihydrofolate reductase (DHFR) catalyses

the reduction of dihydrofolate (DHF) and is an important
enzyme in metabolism. However, the mechanism by which
DHFR catalyses DHF but not other precursors such as folate
is unclear. Preliminary studies [43] using CONQUEST indicate
that polarization of the DHF particularly by proteins on
the Met20 loop are important. Other biological systems
being studied with CONQUEST include ATPase, gramicidin-A
and DNA. We have recently published a study showing that
the electronic structure in a ten base-pair piece of DNA in
water is remarkably localized, allowing excellent linear-scaling
performance [44].

Semiconductor surfaces often show complex reconstruc-
tions, and strained heteroepitaxial growth can give rise to three-
dimensional structures; a case in point is the ‘hut’ clusters
which form when Ge is grown on Si(001). Using CONQUEST

we have modelled the Ge(105) reconstruction (which forms on

Table 3. Distribution of atoms on processors for the large test
protein.

Processors Ideala Mean Minb Maxc Std. dev.d

4 13 938.8 13 938.8 13 934 13 943 4.92
8 6 969.4 6 969.4 6 963 6 978 4.98

16 3 484.7 3 484.7 3 479 3 496 4.61
32 1 742.3 1 742.3 1 732 1 762 5.99
64 871.2 871.2 860 890 6.13

128 435.6 435.6 425 448 4.92

a Number of atoms/number of processors.
b Lowest number of atoms on a processor.
c Highest number of atoms on a processor.
d Standard deviation.

the faces of the huts) and found both that good accuracy is pos-
sible with relatively modest cutoffs and that there are several
subtly different reconstructions which are possible on the sur-
face [45]. The ultimate goal of these studies was to investigate
the mechanisms behind formation of the hut clusters; using
CONQUEST to model entire huts (as shown earlier in section 5)
we have found that an energetic mechanism explains their for-
mation [46]. The algorithm described in this paper will enable
more studies like those described briefly to be performed, as
well as more ambitious (e.g., long molecular dynamics runs).

In summary, we developed a simple and effective
partitioning scheme using Hilbert space-filling curves and
implemented it in the linear-scaling DFT code CONQUEST. The
scheme is based on spatial decomposition of the simulation cell
into even partitions. The particles are distributed according to
their position in the partitions. Spatial locality of partitions and
hence atoms on processors is achieved by using a Hilbert curve
mapped on the simulation cell. The scheme is fully automatic.
The load is balanced evenly for systems of varying size and
complexity.
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